[박재우] 미적분학 제 1 기본정리
안녕하세요. 여러분
오르비 클래스 수학 강사 박재웁니다.
한참 신경이 곤두서 있을 시기입니다.
체력방전도 심해지기 시작하구요.
6월 모평 편히 치기를 바랍니다.
요즘 저보고 뜸하다는 얘길 하시는 분들이 많은데
많이 바쁘기도 하지만
오르비 게시판 계속해서 지켜보고 있습니다.
어떤 것을 많이 필요로 하는 지 무엇이 진정 도움이 될 수 있는 것인지
하나 하나씩 글들을 보면서 고민하고 있습니다.
여러분들도 생각 많이 하지 마시길 바랍니다.
많은 생각이 오히려 독이 되는 경우가 많으니까요.
그냥 계획에 맞추어 열심히 공부하는 것이 가장 좋습니다.
저도 강의 열심히 하고 있습니다.
자 이제 본론으로 돌아가서
강의 도중에 있었던 내용인데 함수를 하나 정의하겠습니다.
수식이 들어가서 이미지로 첨부하겠습니다.
생각 해 보셨나요 ?
눈치 채거나 이미 아는 분들도 계시겠죠 .
정답은 꼭 그렇다고 할 수는 없다 입니다.
무엇인가 정확한 개념을 익힌 것이 아닌 그냥 결과로 받아들인
학생들 또는 그럴리야 없겠지만 정확히 하지 않은 채
막 던지는 분들에게 배운 학생들은 이 것을 파고드는 문제를 내면
틀릴 수 밖에 없습니다.
마치 2년전 수능 가형 30번에서 삼차함수가 당연인줄 알았는데
유리함수일 수도
있다라는 것과 정적분 위끝이 변수로 주어진다면
그것이 아래끝보다 항상 더 크다는 것을 보장하지는 않는다라는 것
모두 개념을 중시하는 공부가 일정기간동안은 굉장히 중요하다는
사실을 알려주는 것들입니다.
예들을 한 번 들어 보겠습니다.
이 함수 F는 닫힌 구간 [0, 2] 에서 명백히 연속이지만 1이라는 점에서
미분이 불가능하게 됩니다.
하나 더 들어 보겠습니다.
다시 말해서 이 경우는 F가 닫힌 구간 [a, b] 위에서
미분가능하더라도
일반적으로 F의 도함수가 f 가 되지는 않는다는
것입니다.
이 두 문제의 공통점을 발견하셨나요 ?
아주 중요한 출제 주제인 미적분학 기본정리에서 가장 중요한
단서 조항이 하나 있습니다.
우리는 너무나도 초점을 정적분으로 주어진 함수 F에
당연히 맞추고 있지만
바로 이 정리의 중요한 단서조항은
입니다.
무엇이 중요한 지 잘 아시겠죠.
연속성은 어디에서든 매우 중요합니다.
그 토대 위에 여러가지 정리들이 발생하는 것이죠.
당연히 연속성은 중요 출제가 되기에
드러나 있든지 숨어 있든지 항상 염두에 두세요.
마치 분수가 나오면 기울기 변형이 아닐까 생각하는 것 처럼 . . . . .
이상 누구나 알 것 같지만
아무나 아는 것은 아닌 내용입니다.
열공하세요.
0 XDK (+100)
-
100
-
국 수 영 탐 다 과외 중(탐구는 정법 사문 세사 국수영 과외생들 풀이법 추가로...
-
정답 / 정답률 추가함; 수학 기출 번호로 찾는 사이트 0
https://pastkice.kr/findbynumber.php 기존...
-
저는 100문제 정도 풀면 그 중 60문제를 계산 실수로 틀리는 사람입니다. 제가...
-
강사 3명이라 수업 한 번 돌고나면 강사 교재만 엔제 3권 분량이 나옴... 근데...
-
ㄹㅇ 개많음ㅋㅋ
-
가입하니까 온갖 의대생들이 보내던데 나 뭐 어케 잡을 수는 있는건가
-
나 현역때 봤던 거 같은데 대학 어디감?
-
스카이 ㄹㅈㄷ 5
딘시보니 스가이 였네
-
강민철 범작가 0
강기분까지는 다 할 생각이고, 새기분으로 넘어갈까용 아니면 국일만을 해볼까요?...
-
https://orbi.kr/00071821707
-
헤헤
-
하루에 14시간씩 박혀서 공부밖에 안하는데 어케이김 간절함의 차이도 다르고 정시<<...
-
야경이나 보고가셈 눈싸움 on ㅋㅋㅋㅋ
-
계약학과 붙으면 1
첨에 등록금 얼마냄? 추합붙으면 돈 넣어야되는거아님?
-
[단독] 조선업계도 ‘주 52시간 근무 특례’ 요청…“미래 경쟁력 지원해 달라” 1
송언석 국회 기재위원장 주최 간담회서 ‘첨단선박기술 R&D 인력’ 대상 특례 요구...
-
홍대 자전 최초합 인증합니다 1지망이라 등록할 예정입니다. 고2때 수능 43243...
-
저 원랜 아파트 단톡에서 구했는데 이젠 자취해서 어떻게 구해야할 지 모르겠음 아파트 광고?
-
강기원쌤 연대 세미파이널 표점 102 98 134 109 전현정쌤 이대 파이널 평균...
-
"딥시크에 '中 국영통신사로 사용자 정보 전송' 코드 숨겨져" 1
美 사이버보안업체 주장…"코드 해독 결과 감춰진 부분 발견" (서울=연합뉴스)...
-
수시는 음 그렇군 하고 말앗는데 학교애들 설대 정시 합격증 우르르 보이니까 한없이...
-
신규 원전 1기 축소 수정안 제시에도 야당 몽니에 수립 난망 [발목 잡힌 전기본] 1
[데일리안 = 임은석 기자] 전력수급기본계획(전기본)이 사상 초유의 지연 사태를...
-
아니 국숭에서 설대면 대체몇급간임??? 한번에 저정도로 올리는거 처음봤어.,
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
한능검 1급 맞으면 수능 한국사 걱정은 평생 안 해도 됨? 1
한국사 50~47 진동 중인데 이제 공부 안해도 되겠지?
-
노베기준 비율로 따지면 공부량 몇배정도 차이남? 현역기준.
-
한수원 '20조 슬로베니아 원전' 수주 포기…유럽서 사실상 철수 1
[서울경제] 한국수력원자력이 스웨덴에 이어 슬로베니아 신규 원전 건설 사업...
-
딮기가 우승했다는 가정하에
-
인강민철 0
호수마다 난이도 차이 있음? 난이도 차이 어느정도임?
-
예비 고3입니다. 고2때는 항상 국어 백분위 98 이상이었고 3학년 모의고사 기출...
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][밥집] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
밥 먹으면서 보기 힘든 거 말고는 아쉬울 게 없었다
-
정법 선거랑 부부부모자녀관계는 시간내서 강의 한번 더봐야할듯요 너무빡세네.. 영어도...
-
커뮤에는 왤케 많이 보이지 현실은 ㅈㄴ 드문데
-
개념서 유제 정도만 풀어주면 됨 좀만 해도 성적 쑥쑥 올라서 학부모님이 좋아하심
-
설대 텝스 1
영어 수능 이후로 한 번도 안 봤는데 대충 워드마스터라도 외워가야함? 토익처럼 문제...
-
1000 덕코를 주시면 뮤슨 질문이든 대답해드립니다
-
걍 기출문제집이지 뭘 마더텅 풀다 갈아타고 번장에서 구해풀고 .. 뭐 또 퀄리티좋은...
-
홍대 경영 예비 0
543번인데 될까요??? 작년에 추합돈거 보니까 565%던데
-
빛조차 빨아들이는 블랙홀 ㅈ간지임 블랙홀 되는법 없나
-
이번에 지구과학에서 생윤으로 돌리려는데 생윤이 처음이라 커리를 어떻게 해야할지...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다 대가리를 존1나 쎄게 쳐서 제...
-
어느정도길래 난리임
-
전 2-3등급->1등급 만드는거는 잘할 자신있는데 4-5는 어디부터 해야할지 감이 잘 안옴…
-
설의만 넷이 나오네;;;;
-
LCK Cup 이벤트컵도르는 그 해설만 봤는데 선수가 한건 처음들었네
-
현재 현우진 뉴런 수12 미적 듣는중이고 현우진 풀커리탈 예정인데 3월부터 개강하는...
-
정시파이터 폐지 0
사법고시 막차 탄사람이 사법고시 사라지는걸 눈으로 볼 때의 느낌과 비슷하지 않을까...
-
인증 17
.
흥미로운 내용이네요 ㅎㅎ 그런데 고교과정에서는 f가 연속인 경우만 다루니 고교과정 내에서는 그냥 F'=f로 다루어도 큰 문제는 없는건가요??
고교과정에는 함수가 연속인 것만을 다룹니다.
그래서 평가원에서도 다음과 같은 형식으로 문제를 출제하는데,
t가 2일때와 3일때, 그래프 아래의 넓이와 같으므로
선생님이 말씀하신 개념을 적용하면, 좌 우 극한이 다른 점에서 미분 불가능합니다.
좋은 관점 감사합니다.
좋아요
드립니다
제 의도의 정확한 해석
고맙습니다
f : [a, b] -> R
이 무슨 뜻이에요??
함수 f가 닫힌구간 a,b내의 임의의 구간에서~아닌가요?
아 그냥 정의역 공역인가
닫힌 구간 [a,b]에서 실수 집합으로 가는 함수 f라는 뜻입니다
FTC
...불연속인 함수도 적분을 시키나요? 그냥 관성에 젖어들지말자는 예시로 드신건가요?
연속이 아닌 함수도 적분가능한 함수가 될 수 있지만 고등학교 과정에서는 다루지 않습니다.
저도 이게 궁금한데 애초에 미적분학의 기본정리를 쓸수 있는게 f가 닫힌구간에서 연속일때 아닌가요?
네 맞습니다
그렇게 가정을 정확히
숙지하고 있으시면 됩니다
불연속인 함수의 적분가능성을
고교과정에서
예전에는 가우스 함수를 예를 들어
구간을 잘라 적분하는 것으로
설명하곤 했습니다
미적분학 기본정리에서 부연한다면
단순히 원시함수와 그 도함수의 관계로
무조건 암기하는 경우에 대한 것을 경계하고자
하는 뜻의 글이고
누구나 알지만 아무나 아는 것은 아니라는 것에서
연속성을 생각하지 않고 암기하면
안된다는 뜻으로 썼구요
명제의 가정과 결론이 바뀌어서는
안된다는 뜻입니다
역시 세상은 넓고 모르는건많아...
유한한 점에서 불연속이거나 셀 수 있는 무한한 점에서 불연속이라면 적분가능합니다
할수도있다는게 옳겠네요
우선 좋아요 누르고 갑니다
위끝이아래끝보다작아도 F'x=fx입니다;;
두사진다 박스친거만봐주세요
처음글올라왔을때 대충읽고넘겼는데
공부하다저런상황오니 글쓰신게생각나서 혼란왔었네요
제가틀린건가요혹시? 저렇게하는게맞을텐데용제가알기론
1. 삼차함수가 아니라 유리함수일 수도 있다'
2. 위끝이 아래끝보다 항상 크진 않다
두 가지를 독립적으로 제시하신 것 같은데요
두경우모두
정답은 꼭 그렇다고 할 수는 없다
가틀렸다
가제생각입니다
네 맞습니다
이론적인 부분에 있어서 정확히
알고 가자는 얘기입니다
두 예는 조심해야할 두가지 사안을
예시로 든 것이라 본문 내용과 독립적인 것 맞습니다
정적분 위쪽 값이 항상 아래 보다
큰 것을 가정하고 들어오는 문제가 아니라면
예를 들어
삼각함수 같은 것이 구간 끝으로
온다면
우측 적분 되어진 함수의 조건에 따라
해석이 이루어져야 겠죠
제 말은 아래 위 구간이 함수로
주어졌을 경우를 생각하라는
겁니다
미적분학의 기본정리 이전에 교과서에선 '정적분'을 애초에 연속인 함수에서만 정의합니다.
따라서 고등학교 과정에서 정적분으로 정의된 함수가 미분가능하다고 말하려면 피적분함수가 연속인지 체크할 필요는 없습니다. 피적분함수가 연속이 아니면 적분 기호를 씌우는 것 조차 불가능하니까요.
22 애초에 고등과정에서는 정적분을 연속함수에서만 정의하는데 갑자기 이런 예시를 끌고 나오시면... 솔직히 조금 당황스러웠어요
수능 수학에서는 전혀 신경 쓸 이유가 없는 부분.
원 의도가 어떻든, 어떻게든 자극적이고 처음보는 내용으로 수험생들 관심을 끌고 싶어하는 것 처럼 보임 ㅋ.ㅋ
평거원에서는 교욱목표를 달성하기위해 문제를 출제하므로 예외적인 항목을 배제함은 맞고 위에 칼럼이 수능수학에서는 많은 쓸모가 있지 않고 기타 평균값정리의 역과관련한 것들도 마찬가지지만, 이런 문제들을 생각해보는 것은 수학적 사고력을 기르고 사고를 넓히는데는 좋른 글들임은 분명합니다. 다만, 이런 글들을 보면서 오히려 헷갈리시는 분들은 그냥 잊고 하시던대로 하시는게 더욱 좋습니다. 즉, 누군가에게는 필요할 수도 있는 글인거죠.
첫째줄은 맞는 말씀을 하셨으니 좋아요는 누르겠습니다.
적분가능한 함수만 읽고 의도파악 다해버려씁니다
연속이라고 일부러 말씀안하신것같았어요ㅋㅋㅋ
ㅋ 대단