사각형 대각선 이은게요
게시글 주소: https://leave.orbi.kr/0003338773
사각형 대각선 이은 선분끼리 길이가 같고 서로 다른것을 수직이등분 한다 라는 조건만 보고 직사각형이라고 바로 말할수 있나요?
*수직이등분이 아니라 그냥 이등분이요! 잘못 적었네요!!
이거 두 대각선 원그리고 두 지름을 대각선으로 하는 사각형 그려서
생각해봤는데 맞는건가요 ㅡㅡ;;같은각 표시해가면서 되는거 같은대;;
에이 도형의 성질 중 1 한개만 알때도 반대로 에이라고 말할수 있는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
작수 41로 1인데 7월부터 합류한다치면 무슨 강의부터 듣는게 나을까요
-
공부법 커리 등등 아무거나..
-
가능? 불가능?
-
착하고 온순해 자리를 바꾸어 달라는 친구의 부탁을 잘 들어주었으며 친구 웃기고있네
-
프사 추천 좀 2
ㅊㅊ
-
슬기<—-이상형 ㄹㅇ 성격 너무 좋고 너어무 예쁨 덱스도 남성적으로 잘생기고 매력적이라
-
자기연민은 4
ㄹㅇ 답이 없음
-
한양 경영 0
한양 경영에서 공대로 전과나 다수전공 많이 빡셀까요?
-
뉴런 스블 0
뉴런 작년에 들었는데 거의 까먹었고 26뉴런 다 사서 미적 띰3 강의 7개분...
-
손 들어주세요
-
이런 널 보며 행복할 나를 알잖아
-
불쌍함
-
레츠고 팀 발차기 마스터 리신 , 호날두 , 마스터 우 , 정석민 lets go
-
⭐️ 연세대학교 중앙새내기맞이단에서 25학번 아기독수리들을 환영합니다 ⭐️ 0
⭐️ 연세대학교 25학번 아기독수리들 주목 ⭐️ 안녕하세요! 연세대학교...
-
미래가 두렵다
-
굉장히 힘든 시간이었다 전해져..
-
나도 그림 그려볼까 12
이미지 주삼 2명까지 받음
-
작금의 세상에서 발생하는 갈등은 사람들이 서로를 이해하지 못하는 것에서 촉발된 것이...
-
내맘대로 그린다
-
물2 현정훈쌤 정규반 개설 안해주세요? 재종에서만 강의하시는거에요? 아놔 아무도...
-
휘파람 8
-
경한은 너무 레전드 높던데 반영비 정상화되면 나도 비빌만한가 8
적96이상찍으면어찌저찌비빌만하지않을까싶어
-
찐이 항복선언한건가
-
캔맥 ㅊㅊ 받 6
ㅈㄱㄴ
-
실시간 4
고양이
-
외화유출범등장 16
26분 뒤 매국노 될 예정
-
눈성형마렵네 8
일단눈이너무몬쉥겻어..
-
다른 지방 교대들보다 부산교대가 좀 더 높다는거 같은데 맞나요? 집이 수도권이고...
-
올해도 목표하는 바 모두 이루시고 늘 행운만 깃들길 제 마음 담아 진심으로 응원하고...
-
ㅇㅈ 14
흠
-
새르비가 뭔가요. 10
-
ㅆㅂ
-
전에 얘기한거긴 한데 너무 개그욕심내거나 활발해보이려고 무리하지 마셈 그런건...
-
챗지피티나 이런거 가지고 좀 놀어보셈 대학가면 많이쓸건데 익숙해지면 좋음
-
전남대 경영학부 0
예비 43번이면 가망없겠죠 ,,? 이번에 무조건 붙어야해서 그냥 다른데 붙은곳 넣는게 맞죠 ?
-
호감형외모와 목소리도 필요한듯해요... 스타성이라는게
-
일단 저는 경한이 아니여도 지금 학교에 너무 만족해서 반수같은건 안할거지만...
-
이거 루피인가 옹기종기 모여있는게
-
나그럼진지하게 미적과탐 변경후 설의목표로 +3정도 더 할 의향 있는데
-
솔직히 1
반할뻔했음
-
100-96 1등급 95-91 2등급 90-86 3등급 85-81 4등급 80-76...
-
정확히 폰 모서리가 코를 찍었어 아오아파라
-
좀 무서워서 듣기싫은 쌤들이 있어요 정석민쌤같은.. 그렇지만 잘 듣고있어요 잘생긴...
-
군대내에 토익 공부용 아이패드 사용이 안되는 이유:안되기때문 ㅋㅋㅋㅋㅋㅋㅋ...
-
무빙건햄 2
공군가심??
-
사는게노잼됨
-
영양가있는 똥글 쓰는법좀 알려줘
-
ㄹㅇ 말이 안나옴 차은우까진 아닌데 비슷함 ㅇㅇ
이런거 수능에 필요 없는건가요? 조건이 제한되있을때 도형의 생김새?파악?
길이가 같은 두 직선의 가운데점을 겹쳐서 못으로 고정시키고 두 직선을 막 돌려본다고 생각해 보세요.. 그리고 끝점을 연결하면.. 직사각형이 될 수밖에 없을 것 같네여?
답변 감사합니다 생각해 보다 보니 원안에 중점을 지나는 두 선분을 대각선으로 보고 그리면 그림은 다 직사각형 처럼 나오는데...제가 직사각형만 골라서 그리는거 아닌지 생각이 들어서요;;;눈에 보여도 증명을 못하면 확실하지 않다고 생각해서 미처버리겠어요 ㅋㅋ 겨우한거 같긴한대 이런거 수능에 별 도움 안되나요?공도 때매 중학 도형 공부하는데 ㅠㅠ
그건 마름모 아닌가요..
마름모도 아니고, 직사각형도 아니고, 정사각형밖에 없는것 같군요. 수직이등분하려면 마름모일텐데, 대각선을 이은 선분끼리의 길이까지 같으려면 그 중 정사각형뿐입니다.
대각선이 수직이등분이 아니라 서로 이등분 하는조건이면 직사각형이 되는게 맞나요?
그건 평행사변형 입니다 직사각형은 네 각이 모두 직각인 사각형이 정의라고 중학교때 배운거 같은 기억이..
길이 같지 않아도 수직이등분 되죠. 아마 글쓴님이 쓰신 내용 자체가 마름모의 정의로 알고 있습니다.
네 제가 글을 잘못 올렸네요 수직이등분이 아니라 그냥 이등분이요
답변 감사합니다
보통 a 성질이 1 2 3 있을때 그중에 하나만 알아도 a라고 볼수있는지 공부하고 있엇거든요
아침님 말씀이 옳네요.
길이가 같고 이등분이다.
=> 합동삼각형을 찾아보세요. 이등변삼각형도 찾을 수 있구요.
그러고 같은 각들을 표시해보세요.
그러고 명칭은 모르겠는데, 동위각성질을 이용해 두 각의 합이 180임을 보임으로써, 직각을 찾아보세요.
직사각형입니다.
중학교교과서에 나오는 내용이고, 알아야합니다~^^;