나머지가 같으려면요
게시글 주소: https://leave.orbi.kr/0003352021
어떤 조건있어야하나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 칸막이 안에서 앉아서 보는 변기로만 해두고 화장실 남녀구분없이 한방으로 만들면...
-
고1 질병조퇴. 2 고2 질병결석 1. 질병지각 1. 질병조퇴 1. 질병결과 2...
-
정말 죄송합니다 진짜 차단만하지마요 미안해요
-
알바 주 몇 회 몇 시간 해서 월급 어느정도 받으셨나요?
-
나 오니까 왜 이럼
-
수학유기로 2
수학유기로 국어만점을 쟁취하자 캬캬
-
뭐 너무도 당연하게 예비도 없음
-
ㅇㅈ 7
눈오리
-
ㄷㄷ
-
차단기준 14
분탕, 닉, 뉴스, 프사
-
네
-
새벽반이라 사람이 많이 없군 내일은 덕코를 받고 본격적으로 장사를 해볼까..
-
어디까지 해야하지
-
피어리스의 최대 수혜자 팀이다 아니 언제는 시우 : 신인이라 챔폭 불안한거 아님?...
-
님들 차단기준이 뭐임 19
-
좌우 가릴 것 없이 다 지들만 깨어있는 시민이고, 애국잔 줄 아는게 코미디임.....
-
님들 차단목록 몇명임 11
ㅇㅁㅇ
-
진짜 풀면서 울 뻔
-
드릴 초반에서 문제당 5분씩 걸리네.......폼 돌아오려면 얼마나 걸리려나.....
-
그림 나왔습니다 8
하체는 알아서 그림
-
07 현역입니다.. 내신때 생1을 햇엇어서 24수능을 한번 풀어봣을때 18개...
-
너무궁금ㅠㅠ
-
대학을 어디갈 수 있을까요.
-
나중엔 얼마나 재미없을까 너무 두렵 진 않다 난 원래 미래를 걱정하지 않는다 크크
-
님들아. . . 니네가 원하는대학교 못갔다고 낙담하구 열등감느낄수있겠지만 거기가서도...
-
뚱뚱해가지고 간식 주니까 후욱후욱 거리네요
-
어카노? 운지마렵노~~~
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는예비 한국외대학생,...
-
에이됏다 6
딴거함걍
-
또 한번의 미친 서사를 쓰는거긴함
-
아는선이나 주관적인 생각하에 답변해줌
-
새해부터 기분 좋게 시작할 수 있겠네용 흐흐 단지 누군가 나를 알고 있고 기억해주고...
-
국어:나머지 = 10:0이 되버렷
-
얼마나 적음? 난 총 9권
-
[속보] 김해공항서 에어부산 항공기 꼬리에 불…승객 169명 비상탈출 3
김해공항서 에어부산 항공기 꼬리에 불…승객 169명 비상탈출
-
원래 저런 성향인가
-
언미생지 89 81 1 81 91 인데요. 대치 시대 안될까요??ㅠㅠㅠ
-
현역 물2ㅋㅋ 19
07 현역이 물1 선택에서 물2로 전향하려고 하는데요 물2 6평까지 1등급...
-
너무 그림이 고퀄이면 제가 못그려요
-
작수 41로 1인데 7월부터 합류한다치면 무슨 강의부터 듣는게 나을까요
-
공부법 커리 등등 아무거나..
-
가능? 불가능?
-
착하고 온순해 자리를 바꾸어 달라는 친구의 부탁을 잘 들어주었으며 친구 웃기고있네
-
프사 추천 좀 2
ㅊㅊ
-
슬기<—-이상형 ㄹㅇ 성격 너무 좋고 너어무 예쁨 덱스도 남성적으로 잘생기고 매력적이라
-
자기연민은 4
ㄹㅇ 답이 없음
-
한양 경영 0
한양 경영에서 공대로 전과나 다수전공 많이 빡셀까요?
-
뉴런 스블 0
뉴런 작년에 들었는데 거의 까먹었고 26뉴런 다 사서 미적 띰3 강의 7개분...
몫이 같은 인수?가 있으면 되는거 같은대 잘 모르겠어서 ㅜㅜ
정수론에서의 문제인지 다항식에서의 문제인지 알려주세요
다항식에서요! 정수론에선 또 다른건가요?
그냥 다르다기보다는 설명하는방법에 차이가 있으니까요 ㅋㅋㅋㅋ;;
다항식의 경우 두가지로 생각할수 있는데
10가에서 배웠던 지식인 나머지정리를 이용하면(지금은 수-상이었나....)
f(x)와 g(x)가 h(x)로 나눈 나머지가 같다고 보면
f(x) = h(x)Q(x) + R(x)
g(x) = h(x)Q'(x) + R(x) 로 두고 나머지정리법을 이용하여 h(x)=0을 만족하는 값을넣어서 푸는것과
두 다항식의 차가 몫을 인수로 가지게 되면 되겠네요
어차피 두 방법이 다 같은 맥락이니까(위의 두식의 차) 실질적으로 한가지네요.. ㅠ
Fx를 gx로 나눈 나머지 R
Fx를 hx로 나눈 나머지 k
Fx를 gxhx로 나눈 나머지 y라고 할때
R=y
K=y 성립하는건가요?
그런대 y=a g(x)+R이건 어떻게 알수 있는건가요 ㅠㅠ
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
아 어제 새벽 세시부터 이거 하고있는데 너무 어렵네요 답변 감사드립니다
이해를 못하면 답답하고 열받아서 이해할때까지 쓸대 없이 집착하게 되네요 ㅠㅠ찾아 보니까"피제수 제수 원리 어쩌고 뭐 이해를 잘 못하겠더라구요"
"Gx로 나누어 떨어지면 y를 gx로 나눈 나머지를 알수 있는 이부분을 잘 이해를 못하겟어요 ㅠㅠ" 숫자로는 24를 5로 나누면5 4+4 .,,,15로 나누면 15 1+14
다시 14를 5로 나누면 4이런거 같은대 나머지를 원래 꺼로 나누면 나머지가 같아지는 이유를 모르겠어요 신기한대도 ㅠㅠ
나머지는 gx의 배수가 아니고 gxhx보다 작다 >이거 가지고 gx로 나눈 나머지와 같다를 알아야하는거 같은데 잘 이해가 ㅠㅠ