[화학1 칼럼] 어짜피 비율 - 파급효과 미리보기
기출의 파급효과 교재에 새로 쓰이게 된 계산량 줄이기 관련 칼럼입니다. 이 부분이 화학식량과 몰 단원에 쓰인 칼럼이라는 사실을 인지하고 읽으시면 됩니다. 이러한 기술을 활용한 풀이를 더욱 연습하시고 싶다면, 기출의 파급효과 교재나 추후에 공개하게 될 ebs 선별 분석서에서 연습해보실 수 있습니다.
※ 어짜피 비율 - (임의의 실제값 대입)
이 단원에 해당하는 문제들의 경우 꽤나 계산량이 많다. 특히 제작년 수능인 2022학년도 수능부터 이러한 경향이 두드러졌다. 이러한 복잡한 계산을 하는데에 있어서 미지수가 많으면 많을수록 계산이 복잡해지기 마련이다. 그래서 문제 풀이의 진행과 계산에 있어서 이 많은 미지수들 대신 실제값을 사용하여 계산을 편리하게 하도록 하는 하나의 기술을 소개하고자 한다. 이 기술은 현재 서술하는 2단원에서 뿐만 아니라 4단원에서도 계산량을 줄이기 위해서 사용될 수 있기 때문에 이 기술을 잘만 활용한다면 시험장에서의 강력한 무기가 될 수 있을 것이다. 가장 먼저 이 기술을 사용할 수 있는 조건에 대해서 먼저 알아보겠다.
1) 문제에서 요구하는 값을 확인하자.
화학I은 비율의 과목이다. 문제 조건에서 빈번히 등장하는 상댓값과 분수 자료들이 이를 증명한다. 상댓값이나 분수 자료를 답에서 요구하는 경우, 미지수를 많이 잡더라도 결국에 마지막에 가서 답을 낼 때는 이 미지수들이 소거되기 마련이다. 우리는 이걸 역으로 이용해서 문제에서 요구하는 값이 상댓값이나 분수(비율)일 경우, 조건을 만족하는 미지수를 잡는 대신 이 조건을 만족하는 편리한 임의의 실제값을 넣어보자는 것이 기술의 취지이다. 그럼 예시를 들어가며 어떤 상황에서 이 기술을 사용할 수 있는지 알아보자.
이 선지의 경우 이전에 언급했던 2022학년도 대수능 18번 문항의 선지이다. 이 선지를 관찰해보면 선지 ㄱ,ㄴ,ㄷ 모두 문제에서 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에 이 기술을 쓸 수 있다. 한가지 예시를 더 알아보자.
이 선지의 경우 위에 등장했던 2022학년도 대수능과 같은 해 9월에 18번으로 출제되었던 문항의 선지이다. 이 선지를 관찰해보면 (가),(나),(다)의 대응을 물어보는 ㄴ선지를 제외하고는 모두 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에도 이 기술을 쓸 수 있다.
2) 조건을 만족하는 임의의 실제값을 대입하자
임의의 실제값을 대입한다는 말이 무엇인지에 대하여 간단한 예시를 들며 설명해보겠다. 문제를 풀이하다 보면 미지수를 도입한뒤 자료 해석을 통해 미지수간의 관계를 알게되는 방식으로 풀이 과정을 전개해 나가는 경우가 매우 많다. 얘를 들어 도입한 미지수가 x,y,z이고 문제 조건 해석을 통해 알게 된 미지수들간의 관계가 x=4y=2z라고 해보자. 이러한 경우에 임의의 실제값을 대입한다는 말은 x 대신에 4, y 대신에 1, z 대신에 2를 대입하여 문제 조건을 통해 구한 미지수들 간의 관계, 즉 비율을 만족하고 동시에 더욱 편리한 실제값을 대입함으로서 계산의 간결성을 챙긴다는 말이다. 추가적으로 문제를 풀어보며 이해를 돕도록 하겠다.
자작문항 예제)
풀이)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 자니 2
ㅇ
-
쉬운 회차 > 30분 다 씀 어려운 회차 > 다 쓰고도 2문제 못 품 이거 고정...
-
사문 퀴즈 4
갑국에서 을국 이민자들에 의해 소개된 OO은 국교의 교리에 위배되는 재료가...
-
흠..
-
아님 말고
-
본론부터 말함. 서울, 경기, 한국 같은 높은 곳 말고 인과영, 대전, 대구 등...
-
딱 수능 일주일 전쯤 새벽, 커뮤 속 호기심에 들어가본 일반유저 예측글에서 나오는 법...(뇌피셜)
-
그래미는 ㅋㅋㅋ 5
노미도 개판났네
-
뭐하시고 계시고 언제 잘거에요!
-
님들급함 빨리 ㄱㄱ 14
롯데리아 양념감자 토핑추천좀 칠리?어니언?
-
N제랑은 또 다른 느낌이네
-
아니면 송의 사의화? 걍 느낌이 그럼 나만 그렇나
-
월,화에 국어 실모 치면 좋겠다고 김승리가 그러던데 치는게 맞을까요???
-
바람이불어 결빙의아버지 ㅇㅈ?
-
아파트 연계로 나온다니깐??
-
독서 궁예 0
사회: 우주 자원 소유와 관련한 논쟁 과학: 골딩햄의 음속 측정 or 기계학습...
-
물리 논리학 let's go
-
용산에서 총선 지고나서 물렀으면 해결됐는데 아직도 안 물러서 이젠 답이 없어졌음....
-
ㄹㅇㅋㅋ
-
ㅡ인문사회 : 채무의 변제 or 동조현상 ㅡ과학기술 : 전도띠 ㅡ(가)(나)...
-
제일 자신있는 주제임
-
수학공부량보다 국어공부량을 더 늘려야된다던데 맞나요???
-
생명 3 목표면 버려도 되는 문제 좀 알려주실 수 있을까요?? 0
버려도 되는 문제 알려주실 수 있을까요
-
말그대로 2026 수특 표지뜸 다 좃같이생김 그래서 풀기실타…쉽바 예비고3들아...
-
글이 좀 깁니다 음슴채 쓰겠습니다 부산 광안리 옆 아파트 사는데 스카에서 공부하다...
-
찌라시 찌라시 1
매해 나오는 얘기 아닌가요
-
봄이 와 0
꽃을 피우고 여름이 와 기억이 녹아 내려도 개 추워 시부레
-
내가 잘못 알고 있는겅가...
-
유체는 진짜 시도때도없이 볼지경인데 아직도 ㅈㄴ어렵고 단백질 강k 7회서...
-
존나 맛있음
-
님들 10
왜 안 자
-
이게 왜 달이 인격화된거죠 혼자 말거는거 아닌가요 달은 가만히 있었는데 달도...
-
수능 밤샘 0
오늘 밤새려고하는데 수능때 지장갈까요ㅔ
-
우하하 번장행이다 번장행
-
이제 잘까 5
-
역배로 갈지 정배로 갈지 항상 객관식 하나 정도는 거르는데 음..
-
지금시기엔 안들어오는데 맞는것같다
-
가나 지문 희망사항 12
쿤과 파이어아벤트 과학혁명
-
오빠 패션 어때 0
흑청+체커보드
-
이 새끼 1
맛있나요
-
싱숭생숭 하실텐데 모두 충분한 휴식을 취하시고 건투를 빕니다.
-
에이어가 지문 자체는 좀 더 어려운 느낌임 헤겔이 22수능때 나머지 괴랄한 문제랑...
-
생윤 벼락치기 해야하는데 인강들으면 완강도 못하고 수능장 갈 것 같아서 차라리...
-
저 원래 점수 적는 글 진짜 안쓰는데 한번만 봐주세요 ㅠ 아 진짜 수학 너무...
-
오 이지영 이적 2
어디로 하실려나 대성?
-
태풍 지나가고 나면 수온약층 시작깊이 깊어지는긔 아님? 3
용승 효과보다 해수 섞여서 혼합층 두꺼워지는 효과가 더 큰거로 알았는데..?? 어떤게 맞는거임
-
식센모 하나도 안했는데 조금이라도 하는게 좋으려나요
-
내가 뭔소리를 했는지 아직도 모르겠어
-
확통 1~7까지 자연수에서 고르라고한거 혼자 8까지 껴서 차력쇼함 왠지 ㅈㄴ 어렵더라 ㅋㅋㅋㅋ
감사합니다 선생님, 확률과 통계 성적 향상에 깊은 도움이 되었습니다.
ㅋㅋㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋ