수열 준킬러 1분 안에 푸는 방법 (2)
과연 무조건 첫째항부터 나열하는 것이 항상 좋은 걸까요..?
또한 나열하면서도 시간과 과정을 조금이라도 단축시킬 수는 없을까요..?
등차수열이나 등비수열이 아닌 순수한 수열 문제에서,
모두가 알다시피 ‘일단 나열해놓고 보는 것’이 정말 중요합니다.
하지만, 문제의 방향성을 염두한 채로 나열하다보면 불필요한 시간을 훨씬 줄일 수 있습니다.
올해 6월 모의고사 15번입니다.
이 문제에서 모든 케이스를 구분짓는 핵심적인 요소는 의 부호입니다.
따라서 우리는 이 부호가 어떻게 전개될지에 모든 초점을 맞춰 풀이를 진행해야합니다.
먼저 모든 상황에서
으로 여기까지는 케이스를 나눌 필요가 없어보입니다.
이제 여기서부터 케이스를 나누어야합니다.
이제 k=1부터 k를 1씩 올려가며
등의 부호에 따른 케이스를 나누어보아야합니다.
상당히 번거로운 과정이 될 것 같습니다.
그 전에 풀이를 단축시켜줄 수 있는 규칙성이 있는지 살펴보는 것이 좋을 것 같습니다.
먼저, 과연 모든 항들의 부호가 서로 독립적일까요..?
혹시나 에 숨겨진 규칙이 있는지 살펴봅시다.
위와 같이 식을 변형해보고, 이 세 가지만 놓고
각각의 경우에 어떻게 전개되는지 대략적으로만 살펴봅시다.
만약에 이라면
이므로 입니다.
즉, 음수항 다음 항이 양수항이라면 그 다음 항은 다시 음수항이 됩니다 ... ㄱ
또한,가 전부 음수라면
"어..? 그렇다면.?"
... 이를 통해, 음수항에서 양수항으로 바뀔 때까지
음수항(이후 첫 양수항도 포함)에서 각 항들끼리의 차이는 공차가 2인 등차수열임을 알 수 있습니다 ... ㄴ
마지막으로, 만약 3~6번째 항에서 0이 하나라도 나온다면
이므로 더 살펴볼 필요가 없습니다
... ㄷ
우리는 ㄱ, ㄴ, ㄷ세 가지를 염두한 채로 최대한 빠르게 모든 경우들을 파악해볼겁니다.
k=1일 때,이므로
성립X (- + + -) (ㄱ 활용)
k=2일 때이므로
성립X (ㄷ 활용)
k=3일 때, 이므로
성립O (- + - -)
k=4일 때, 이므로
성립X (ㄷ 활용)
k=5일 때,이므로
성립O (- - + -) (ㄱ, ㄴ 활용)
k=6일 때, 이므로
성립O (- - - +) (ㄱ, ㄴ 활용)
k=7일 때, 이므로 성립X (- - - -) (ㄴ 활용)
k>7일때도 전부
(- - - -)일 것입니다.
따라서 가능한 k는 3, 5, 6 뿐입니다.
우리는 나열을 하면서도, 몇가지 규칙을 미리 염두해두어 케이스를 나열하는 시간을 줄이는데 성공했습니다.
한 문제만 더 살펴봅시다. 2023년도 수능 15번입니다.
이 문제에서는, 모든 케이스를 구분짓는 핵심적인 요소는
이 3의 배수인지 아닌지의 여부입니다.
먼저, (가)를 보고
은 3의 배수가 아니기에
일 것이라고 먼저 확정해야합니다.
(나)를 본 뒤,
이미 모두가 알고 있는 ‘일단 넣고 보자’ 식으로
먼저 대입을 해봐야 합니다.
그러나, 만약을 시작으로 전개를 하려고 하면,
너무 많은 경우의 수가 나옵니다.
그래서 보통 해설을 보면 통상적으로부터 역추적하는 방법을 사용하곤 합니다.
그러나, 현장에서 이 문제를 직면했을 때 부터 역추적하는 것은 상당히 리스크가 있습니다.
어디까지 역추적해야 문제가 끝날지
해보기 전까지는 모르기 때문입니다.
(물론 결론적으로는 5번째 항까지만 살펴보아도 답이 나오도록 문제가 설계되었지만,
저의 경우 문제를 처음 현장에서 직면했을 때 역추적이 언제 끝날지 모르는 불확실성을 회피하고자 아래와 같은 방법을 사용했습니다.)
그렇다면 우리는 어디를 시작으로 전개해보아야 할까요?
모릅니다.
무슨 소리냐고요?
우리는 어느 항들이 3의 배수를 가지는지조차 모르고,
안다고 한들 그 항에 3분의 1을 곱했을 때 또 다시 3의 배수가 나올지 아닐지조차 모릅니다.
그래서 우리는,
3의 배수이면서, 1/3을 곱했을 때 더 이상 3의 배수가 아니게 되는 어떤 항을
k번째 항이라고 가정해놓고,
라고 설정한 뒤 거기서부터 나열해보는겁니다.
이렇게 설정해놓은 뒤 라고 하면, 문제없이 1~k번째 항은 자연수가 되므로 ‘모든 항이 자연수인가?’에 대해서도 걱정할 필요가 없습니다.
이제 에서부터 전개해보면
... 5항 주기로 반복됨을 알 수 있습니다.
이므로, 40이 1, 4, 5의 배수임을 고려해보면
또는
또는
을 만족할 것입니다.
k=4일 때,
그러므로
k=5일 때,
그러므로
k=6일 때,
그러므로
따라서의 최댓값과 최솟값의 합은 224입니다.
순수한 귀납적 추론을 요구하는 수열 문제에서
‘나열하면서 규칙 확인해보기’는 필수입니다.
그러나, 단순히 아무 생각없이 나열하는 것 보다는
상황에 따라 어떤 식으로 흘러갈지 대략적으로 추측해보고,
부호 / 3의 배수 여부 등 문제의 상황을 가르는 핵심 요소에 집중하여 이와 관련된 성질을 미리 파악하고
나열을 시작하면 훨씬 문제를 푸는 과정과 시간이 단축됩니다.
그렇다고 해서, 귀납적 추론을 요구하는 문제에서 ‘규칙을 반드시 찾고야 말겠어’라는 생각으로,
나열을 하지도 않은 채 모든 규칙을 찾아내려고 무모하게 시도하는 것은 오히려 시간 낭비일 수 있으므로
귀납적 추론을 베이스로 깔고 가되, 언제나 문제의 방향성을 염두해 둔 채로 수열 문제에 접근했으면 좋겠습니다.
현재 저희 Team BLANK의 기출문제집 제작이 70% 이상 완성되었습니다.
저희는 기출문제집은 엄밀한 논증 또는 해설지다운 해설보다,
직관을 사용하여 최대한 간결하고 깔끔하게 문제를 해결할 수 있는
해설을 여러분들께 제공합니다.
많은 관심 부탁드립니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 D+1은 불가능 (대충 논술 준비하라는내용) 올려볼까
-
화장해라 4
-
그 뭐지 급수로 표현된거 1/n dx로 바꾸고 뭐시깬지 하는거 이거 미적분 내용인가요?
-
여루비 잠와 후우웅
-
저랑 싸우실분 8
험한 말 맞받아치기 콘테스트
-
예비고3 정시 파이터입니다 내신은 버렷지만 수학은 내신 시험 보는 김에 열심히...
-
사문 갈등론 4
갈등론은 불가피성 강조 아니지않아요? 문제 이상한거 맞죠?
-
올바원 어떤가요 0
올바원이랑 프로모터중에 뭐가 좋을까요? 프로모터가 해설강의가 없어서 좀 걸리긴한데...
-
다들 너무 쉽다던 9모도 그렇게 쉬운지 모르겠는데 45로 간신히 2 받음 기출 현돌...
-
브레턴우즈 이중차분법 카메라 vs 비타민k 헤겔 육가사상
-
ㅈㄱㄴ
-
표점이 계속 잘나오는 과목같지도않고 하는 사람수는 기하급이고 난이도는 ?스럽고
-
아무거나
-
자사고이고 1학년 1학기 5.3 2학기 5.1 2학년 1학기 5.2 2학기는 6...
-
보통 요 점수대 이상 들어오는 사람들이 평가원도 대부분 1이더라
-
보카로+힙합 1
츄라이
-
그래도 생윤은 좀 잘맞는데 이게 사람마다 다르겠지만 기본개념 베이스로 사상가 전제를...
-
답이 3번이라는데 박스 안이 왜 명나라인지 알려주실분ㅠ
-
1차만 붙어도 ㄹㅇ 간다 ㄹㅇ…..
-
끝났나 1
진짜 오래 하시네 방음 안 되는 원룸인 걸 잊으셨었나 ㅋㅋㅋㅋ
-
이 순서대로 정주행하기
-
인생이 노잼이다보니 노잼인간이 되.
-
걍모든과목이좆됨 개념을 봐도 딱짚어서 틀리기전까진 개념을 아는게아닌거같음 근데...
-
내년 과탐 추천 4
현재 물1 화1입니다 내년에 화학은 아무도 안할거같아 탈출하려고 합니다 화1 대신...
-
30강짜리는 못 들을거같고 2,3점만 다 맞고싶은데 이런 사람을 위한 강의 있을까요??
-
다들♥ 9
ᶠYͧoͨᵏu
-
방에 책상이 없고 거실 식탁만 있으면 집공은 불가능임? 5
부모님이 시끄러운 환경에서 공부하는 훈련도 해봐야된다 주의시라 대신 TV는 없고 책장이긴 함
-
오르비 참기 개힘드네
-
모든걸 공개하겠습ㄴ다
-
나도질받할래 4
안해주면울어
-
상상이 후반회차 딱 그렇게 내려고 하는 거 같은데
-
걍 감잡으려고 김종익 잘파모랑 현돌모 시즌1 세움모 이상모 날개 산촌여정 풀었음
-
문제 난이도는 둘이 비슷하고 개념양이나 외워야 하는건 사문이 훨적은거같네
-
오르비 노잼이네..
-
왜 그런걸까 ㄹㅇ 이유가 뭐지
-
3차원 구 그려서 구의 중점으로부터 거리로 보는 거 맞나요?? ㅈㄴ 어려움ㅋㅋㅋ
-
너무 적나라하게 잘 들리는데
-
자기 전에 심심해서 생윤 문제 개념 등등 질문받아요 댓 달리는대로 답변해드림
-
캐롤들으면서공부 2
-
니들이 한 그릇 6천원하던 시절 국밥의 낭만을 아느냐 돈이 궁했던 시절 매일같이...
-
체력적으로 딸린다고 느낀 적이 없었는데 하루에 믈리실모 5개 풀어서 그런가 뒤질 것...
-
다들 자라 11
거북이
-
여기까지 오고싶어서 온 건 아닌데
-
질받 21
암거나 다 ㄱㄱ
-
미국의 성씨 Trump는 원래 독일계 성씨 Drumpf에서 유래했다고 하네요
기출문제집 정말 기대가 되는군요
헉
8개년 평가원기출을 수록한다 하셨는데, 선별문제들인가요?
아님 8개년 평가원 준킬러,킬러를 다 포함하신 문제집인가요?
빨리 나왔으면..ㅠㅜ