우주
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf
Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.
설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.
Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.
Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.
원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)
기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오디는 내꺼야! 0
오디 ㄱㅇㅇ
-
ㅇㅂㄱ 0
-
혼자 지내야지 ㅎㅎ
-
서울대, 서강대, 경희대, 시립대 입학 전 모임 유무 3
연대 고대 한양대 중앙대 이렇게는 입학 전 1,2월달에 정모, 미리배움터 등등 친목...
-
평가원 수식 타이핑 법칙 (feat.내가 쓰려고 만듦) 3
원칙1. 등호, 부등호, 화살표(lim 밑) 앞 뒤로 한 칸 씩 띄어쓰기를 한다....
-
얼버기 0
-
이번에 85점이엇는데 (12,22,25,30틀) 기출 다시 돌리는게 좋나요? 지금은...
-
폐기 5분전에 0
등록해도 상관없겠죠?
-
학원을 안다녀서 확통 2월 전에 빨리 끝내려고 하는데 2025개때잡이랑...
-
님들 그거 앎? 4
평가원은 적분에서 아래끝을 한 세 번 띄어 씀 ㄷㄷ 이걸 이제 알다니
-
크아악
-
흠..
-
오르비언들 바부 4
메롱
-
모 1
아니면 도
-
점공계산기 차이 1
셈퍼랑 시대랑 왜이리 차이가 많이 나는걸까요? 이거 붙을 수 있을까요..
-
삼수좆박고걍암울해짐미필인데시발
-
외대정도면 2
Cpa 준비해도 될까요? 4대법인 티오가 외대시립대부터 기타대로 묶인다는데 당연히...
-
ㅎㅇ 2
.
-
상담해줄 사람 5
9함뇨 소정의 덕코도 드림 쪽지좀
-
얼버 0
기 벌레먹음뇨
-
가 뭘까……
-
상대평가 과목
-
지구가 자료가 좀 많이 남는데 이거 어떻게 처리하죠
-
얼버기 0
굿모닝
-
킹치더 갓..
-
설명절 시작 0
친가댁으로 출발
-
수1, 미적 풀고있는데 둘다 작년보다 이상해짐요...
-
무슨레이드를만든거야
-
바로 라흐마니노프 피아노 협주곡 2번입니다 1악처은 처음에 강렬하게 휘몰아친 다음...
-
오르비 일어나 2
-
이상형 떠올렸음 8
뭘해도 잘했다고 칭찬해주는 사람임
-
오르비잘자 3
-
여전히 내 눈이 틀림없다면 당신은 영광의 항구에 이르겠지 0
ㅇ. 아 졸려 오르비 오늘도 좋은꿈꾸세요
-
의대25학번을 위한 흉부외과가 멸종한 이유(가치기반지불제) 0
흉부외과 의사가 사라진 이유는 너무 많지만 못 들어봤을 얘기를 준비했다....
-
나머지 30%는 질이야
-
목차 0. 자기소개 1. 고등학교 2학년, 3학년 2. 재수 3. 삼반수 들어가기에...
-
돔황쳐
-
인원이 채워질진 모르겠는데 최대 10명
-
10시에 깨어있을걸 만원 날렸내
-
그냥 머릿속으로 초딩 알몸 떠올리는 것부터가 생리적인 거부감 들지 않음? 단순히...
-
이궈거든ㅋㅋ
-
기차지나간당 8
부지런행
-
늦게 자지말기 1
둘둘
-
얼버기 2
반가워용
-
지구과학은 많이 안 빠진 듯 한 거 같기도 하고 국어가 21000명 투표에...
-
잘햇으면 좋겟다... 개떨리네 진ㅁ자
-
평범한 우울글 4
죽을 깡도 없으면서 자살하고 싶다는 생각이 드는건 왜일까 세상 일은 마음대로 되지...
-
피곤해 0
윽
첫번째 댓글의 주인공이 되어보세요.