190630 (나)
조건 해석하면
n=1 ) f(1)=f(1)*f(2)
n≥2 ) f(n)=f(n)(f(n+1)-f(n-1)).
f(6)-f(4) ≤ 0, f(5)-f(3) ≤ 0
=> f(5)=f(4)=0. (n에 5,4 대입).
i) f(2)=-1
=> f(1)=0, f(3)=1. => f(2)=-1, f(3)=1이므로 사잇값 정리에 의해 (2,3)에 f에 해가 있다.
즉, 해가 (2,3)에 하나+ 1,4,5가 잇고, f(2)=-1, f(3)=1이여야하는데, 이러려면 f의 최고차항 계수는 양수여야하고,
f(6) = f(6)-f(4) ≤ 0임에 모순이다.
ii) f(3)=0
=> f(2)=-f(1)*f(2), f(1)=f(1)*f(2). => f(1)=-1, f(2)=1 (If, f(1) or f(2)=0 => f(1)=f(2)=f(3)=f(4)=f(5)=0, 모순)
f(x)=(x-3)(x-4)(x-5)(ax+b)라 두고, f(1)=-1, f(2)=1 대입하면 답 나오겟다아
좀 노잼 문제 같은데 왜 이런걸 추천 ;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예이
-
정시 준비하는 고2인데 수학 풀때 고2 기출은 안푸는게 좋을까요?
-
아니 성과 사랑의 윤리 보부아르 듣다가 무한 버퍼링 걸리네 씨펄
-
선착순이에여? 아니면 접수하고 그쪽에서 성적대로 자르나여?
-
그 사람이 바로 나에요 굵어서 좋던데
-
이런건 왜 하는건가요? 저도 의대 증원 반대하지만 아무리 생각해도 이건 아닌거...
-
[칼럼]생1, 당신이 가계도/돌연변이를 버리면 안되는 이유 5
오랜만에 칼럼을 쓰게 되었네요. 오늘 할 이야기는 생명과학1의 준킬러에 대한...
-
일단 여자임 ㅇㅇ
-
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원” 3
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원”
-
올해 수시로 대학 갔고.. 정시로 옮길생각을 하고있습니다. 농어촌 특별전형 해당이...
-
스틱 쓸모없다 +) 전기차는 기어가 사실상 없다. 진짜 필요없ㄷㅏ
-
이상기후머냐 0
개더운데
-
이거 한번 쓰면 못벗어남 ㄹㅇ
-
대학은 꿇리지만 않을정도로 나오면 됨 숙대정도? 성격 좋고 모자 잘어울리는 여자가 이상형이에요
-
[속보] 국회측 "尹 부정선거 주장 방치 안돼…헌재가 제한해달라" 1
연합뉴스TV 기사문의 및 제보 : 카톡/라인 jebo23
-
대학생 대상 홍보 | 교육협동조합 Topick 4기 모집 0
‘동덕여대 공학 전환’, ‘계엄령과 내란죄’ 소모적인 논쟁에 지쳤다면? 교육...
-
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
ㅇㅇ
-
ㅇ
-
나를 믿는 나를 믿어요 45
'나를 믿어줄 너'가 되어주실 분을 구해요
-
ㅇ
-
사문 1년간 한 컨텐츠 18
개념 5회독 기출 1회독 n스킬 찍먹 10지선다 2회독 2024 리바이벌 1 2...
-
핑프 ㅈㅅ합니다. 원래 과탐 하려다가 사탐으로 바꿔서 재수 하려는데 공대나 수의대...
-
정답은 내가 좋아하는 나 그런 거 아닐까요
-
오늘의 식사 현황 0끼 유지중 뜨면 먹겠습니다
-
뭐야 이거 3
-
밥먹어야되는데 2
아 으아 흐에에엑
-
아 진짜 이해가 도저히 안되네 가치관이 너무 다르니까 힘들어죽겠음 진짜
-
연세대 13
오늘 5시 발표 확정
-
양 적지도 않은거 길게해놔서 끝에 들으면 앞에 까먹게 하는거 킹받거든요 11
나같은 암기력병신은 개념량이 적더라고 하더라도 이러는거 킹받거든요
-
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
퇴원이닷 19
다행...
-
인문은 그렇게 안 빡빡하다고 들었던거 같기도 한데
-
본인 사문공부법 0
개념강의 제대로 1회독하고 기출벅벅 실모벅벅
-
본인 사문공부법 2
1 개념강의 듣눈다 2 한단원 끝나면 기출문제 풀고 오답하기 3 실모를 푼다 4 수능을 본다
-
취임사보다 길었다… 트럼프 속내 드러난 비공식 즉흥연설 1
도널드 트럼프 미국 대통령은 20일 정오 워싱턴DC 의회의 로툰다홀에서 열린...
-
윤성훈 책 존나두껍네 10
아니 종이도 두꺼운데 글씨도 존나큰데 인스타도 쳐박고 한페이지에 문제 하나박고...
-
포고령엔 전공의 처단 ㅋㅋ 보법이 다르네 그냥
-
올해 카투사 신청 하려면 토익 언제쯤 따야하나요?
-
수능 성적 변화 3
24수능 90 87 2 91 74 25수능 98 98 1 85 91 저 열심히 한 거 맞겠죠?
-
지은지 얼마 안되서 시설이 깨끗하다던지 냉방 시설이 빵빵하다던지
-
치과 런침 2
스케일링이랑 사랑니 뽑으러 갔는데 주사맞기 무서워서 스케일링만함,,,
-
영어 3-4등급 4
계속 과외할까요 아님 학원다닐까요.. 예전에는 학원에서 무슨말하는지 아예 모르겠어서 과외했는데
-
나는 반딧불 듣고 있는데 항상 이것만 귀에 쏙쏙 박힘
-
영어는 원래 김지영t듣고 2 받았구 사문은 윤성훈t듣고 3 나왔습니다. 사문에서...
-
나 심각한 얼빠인가.. 19
이렇게 쉬운 사람이었다니
조건 둘 다 개꿀잼인데
수2에 감동을 못받는 이유가 있었네
수2 노잼이야 그냥
걍 재밌기 전에 다 풀어버림 ㄷㄷ
진짜임
아니ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
꼽먹었네 미안해요 ^^..
으헤헤, 근데 까먹엇던 문제라 짜피 언젠가 다시 볼 필요가 잇긴햇어요.