[칼럼] 돌림힘 평형에 대한 접근(1편)
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오노추 0
Bang! Bang! Bang!
-
친구 커플이 나까지 셋이 있는 톡방에서 싸우는데 아오 쌍으로 손절각이 섰음
-
정보) 현재 난리 난 N PAY 대란 요약 . jpg 0
https://sbz.kr/zdk1D
-
자야하는데 2
아
-
맨시티 처바르변서 뉴캐슬한테 맨날 지네
-
진짜 믿는다 상놈들아
-
얼버기 4
지금 일어났어요 안녕하세요..!
-
아가 잘게 3
옯붕이들 잘자
-
얼버기 11
진짜 일어난거임
-
새삼 이런 콤퓨타시대에 선두주자인 앰디비아가 대단해지네 0
우린 어떤 세상에 살고잇는걸까
-
밖이 추워서 패쓰.
-
밤을새겠구만 3
오늘 과외인데 아이고야
-
시발삼분짜리영상을감당못해서뒤지는프로그램이있네
-
동아의 지역인재 608 동국한 유형2 993.5 이분들 중에 한 분이라도 붙는 분이 있을까요?
-
2025학년도 경찰대 영어 1차 시험 기출문제 12번 해설 0
2025학년도 경찰대 영어 1차 시험 기출문제 12번 해설 ( 선명하게 출력해서...
-
진 4타에 레전드로 집착하는 라이엇 답게 컨트롤 1에 공전하는 행성 4개고 컨트롤...
-
잘자요 2
꿈에서 날 깨워줘
-
다시 동면
-
찐막글) 만두님 5
제가 행운의 숫자에 맞춰 7770덕코 드렸으니 올해는 성불하세요
-
글삭제 클리너는 신이고
-
정보) 현재 난리 난 N PAY 대란 요약 . jpg 0
https://sbz.kr/zdk1D
-
주인 잃은 레어 4개의 경매가 곧 시작됩니다. SBS"안녕하세요....
-
우리집은 인서울이 아니라 인서울(의대) 여야 이정도 해주실듯
-
자야지 7
오늘은 무슨 날인지 아십니까 바로 수능이 단 40주밖에 남지 않은 날입니다 280일...
-
다시 탱글만두가 될게요 。◕‿◕。
-
기차지나간당 4
부지런행
-
왜 짝수냐?
-
ㄱㅟ여워 멍멍ㅇ 3
쓰담쓰담할거야
-
밤샐려하는데 7시까진 ㄱㅊ다가 8시쯤부터 맨날 그냥 자버리네요
-
명절 상경길 정체급 답답하다가 왜 갑자기 100km로 달리는 속도가 됨 일단 좋습니다
-
가족 학벌, 재산자랑만큼 없어보이는게없음 자기가 이룬것도 아니고 어쩌라는건지모르겟음...
-
그러면 5수할듯 진지하게 ㅈㄴ 하고싶은데 한번만 참을게요.......
-
에서 쟤를 맡고있습니다 반갑습니다
-
답답해서 단톡으로 넘어감 저번에 링크드린 거기로 ㄱㄱ
-
진짜 wwe중에서도 좆븅신같아서 못하겟다 이건
-
왜 아직까지..
-
글쓰는데 2분걸림
-
평생 쓰고싶어
-
집앞 5분거린데 추워서 나갈 엄두가 안나요..
-
우리 부모님 일 안해서 내가 너무 가난하게 살아 ㅜㅜ 7
엄빠가 가진게 건물 하나밖에 없는데 월세 받는거 말고 엄빠 일안함... 예전에 아빠...
-
현재 미적분 시발점 수강중인 예비 고3입니다. 제가 중학교 때 거의 공부를 안하다가...
-
하이라이트 개잘함 ㅎㄷㄷ 브금도 챌린저끼리의 게임 같은 웅장함이 있어서 보는 맛이 쏠쏠함
-
물론세전 원망한적은 없음
-
미적분 시발점 6
현재 미적분 시발점 듣고있는 예비고3입니다 중학교 때 공부를 거의 안하다가 고2 때...
-
얼마전에 아빠 연봉 들었는데 이정도면 중산층은 되는건가요..?
-
유교드레곤임 ㅇㅇ…
물2 재밌겠다
현장에서 풀맞한 문제들이...