심심한 기출분석 (230922)
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠
(x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무물보 15
안합니다.
-
전통문화대 말한거에오
-
(x가 제1원인)->(x가 원인이 없다) : 제1원인이면 원인이 없음 (x가 원인이...
-
근데 암산테스트 100넘는사람은 머리가 얼마나 좋은거지 16
과탐할때 타임어택 느껴본적 없을듯 ㅋㅋㅋ
-
암산테스트 ㅇㅈ 8
물2화2 해도되죠?
-
형님 죄송합니다… 10
-
저메추받 7
이따가집가서먹을거
-
ㅈㄴ맛있네 ㅋㅋㅋㅋ 맛있어서 개많이먹어버림… 크아아
-
드가자
-
다 똑같아보여
-
들어가기 전에, 이 칼럼은 앞으로 제가 출판할 사회·문화 개념 & 기출 분석서...
-
닉변 하고 싶어 24
근데 많이 남았어 바꾸게 되면 뭐로 할까요
-
{f(x+2)-f(x)}{f(x+3)-f(x)}=0 이다. 9
꿈속에서 261120 유출
-
똥쟁이 프사
-
줄여서 지공
-
이뱃 포스텍 뱃 이거 두개가 아마 가장 희귀한듯
-
악법도 법이면 15
안티팬도 팬이다. 모두를 포용하는 세마넴.
-
하니 엄. 그림 10
-
화확 vs 화학 0
-
계정이 공스타 밖에 없어서... 하하 맞팔할래.?
-
바로 쪽지폭탄오려나
-
전원버튼이 잘 안눌려..
-
문제 선지가 ㅈ같네
-
나는 행운을 바라지 않았다. 예측 범위 밖이라는 점에서, 본질은 불행과 같았기 때문이다.
-
ㅈ목ㅈ목ㅈ목 15
ㅈ목을 합시다.
-
정신없이 잠들었다가 일어나서 떡국 한 사바리 조졌네요 떡국에 있는 떡이 하트...
-
하재호 형님 인스타 보다가 봄 ㄷㄷ
-
유형이 머임?
-
☆선착순9명☆ 15
절 똥테에서 탈출시켜주실 수 있습니다
-
인스타 네이버 유튜브 쓰레드 등등.. 근데 오르비 댓글은 다봄 ㅇㅇ
-
네 왜요 뭐요
-
안들었으면 국어 3~4 맞고 장렬히 전사했을듯
-
상상으로 먹을게…
-
패드
-
내가 지나친 례민충인건가 싶기도 한데 점점 커뮤화/음지화된다고 느낌... 보ㅈ깨...
-
중앙선관위가 발표한 자료에 분명히 부천시 신중동의 사전투표소에서 18210명이...
-
으흐흐.. 올려나..
-
리그의티원<<<<<진짜과학인가 ㅋㅋㅋㅋㅋㅋ
-
내 일주일 주급 : 37만 5천원 ...?
-
이제 간다. 15
글 싹 지우고 12시 땡하면 갈 거임. 덕코 거지라서 10덕 디폴트로 뿌림....
-
60대에는 이룰 듯 ㅋㅋ 30대에 이루는 게 목표긴 한데
-
내일을 잘 버텨보자
-
오
-
완벽하지 않아서 더 완벽한듯? 네 그냥 개소리였습니다
-
작년 더프 평균 보니까 생1 생2 지1 지2가 거의 붙어있는데 지2 표본은 썩었다는...
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼