[칼럼] 삼.사차함수 비율관계 안외우고 푸는법!!
안녕하세용
제가 공부법 올렸었는데 다들 안믿길래... 걍 스킬이나 올릴게여..ㅋㅋ
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
++다음 칼럼글은 아마 '역함수 미분법 일관되게 풀기'가 되겠습니다
아닐수도 있고
아 까먹었다 이거 부호는 그래프 보면 딱 봐도 +인지 -인지 알테니까 계수 -여도 걍 절댓값 붙여서 값만 계산하고 부호는 나중에 판단하는게 편해요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 2
이정도면 나도 나중에 여친 사귀기 ㄱㄴ?
-
그 누구더라 누가 올리버쌤 프사에 닉네임 젖탱이로 해놓고 아 씨발 이게 진짜 될 줄...
-
오르비 뉴비 등장 10
형아들이 많네요 ㅎㅎ
-
남들이 하지 마라는건 이유가 있는데 기어이 해보는 인간들 있음. 근데 그게...
-
ㄹㅇㅋㅋ
-
미적 147 기하 143 확통 139
-
밸런스게임 3
임니다
-
평가원 너무 옛날 기출(+무등비 같은 옛 경향) 걸러낸 4점짜리랑 교육청 기출중에...
-
전체범위의 반정도는 됨? 아님 반보다 좀 많이나감?
-
순수한게 사라졌네
-
궁금한 것들이 좀 있습니다..
-
그런사람이될수있도록노력해야지
-
뭔 들어갈때마다 다 놓치네
-
넘 옛날이라 교육과정에 부합하는지는 ㅁ?ㄹ
-
좌파측, 우파측 각각..
-
재에발 쫌 대학가라
-
시야한구석 쇠퇴하는 소리<==이게 개인적으로 젤 좋음요
-
세종대 재입학 2
세종대에서 반수할 예정이라 재입학제도에 대해 찾아봤는데 아무리 찾아도 정확한 정보가...
-
하ㅡ.. 난 어떻게 해야하지
-
ㄹㅇ
-
팔로워는 800명인데 그이유가.. 예전에 르세라핌 피어리스 쳐서 좀 팔로워가 오른것도..
-
에휴
-
가천대 어딧슴 6
어딧슴
-
근데 그쪽발 드립 재밌는게 너무 많음 ㅋㅋㅋ
-
맞팔구 11
오랜만에..
-
수능을보네..
-
현역이들 미안해 17
시작해 버렸어...
-
네~안녕하세요
-
조대 약대 유급 2
조대 약대 유급 잘주나요? 그 외 약대 중 유급 잘주는 걸로 유명한 약대 있다면 알려주세요
-
자러갈게 9
내일 과외랑 시험 있어서 일찍일어나야돼 다들잘자
-
ㄹㅇ 괜찮지 않음? 친숙한 느낌도 들고
-
국어 옛날 기출 1
국어 옛날 기출 문제집 좋은거 있나요?
-
오르비 진짜 0
존나재밌네밥은언제먹냐아
-
오 1
민트테인가 은테인가 아무튼 이쁘네
-
4호선 하면 동작 - 이수 - 사당 이런식으로 순서대로 말해야하는건줄 알았음
-
둘이 그냥 취향차이인가요? 더 좋은게 있나요?
-
올해 강기분을 못들어서 얼른 강민철 선생님의 용안을 뵙고싶네요
-
선착 2명 7
맞팔 ㄱㄱ
-
댓글 ㄱㄱ 생존신고좀 해요!
-
올해 기균 정시 목포약 최초합이랑, 추합어느정도될가요? 2
올해 기균 정시 목포약 최초합이랑, 추합어느정도될가요?
-
푸드득 3
뿡
-
바로 여러분❤️
-
이야
-
농협대학교 3
높다고 들었는데 어느정도임...?
-
배움에는끝이없다더니..
-
이미지 적어볼게 26
고고 내가 적고 싶은대로 적어볼겡
-
님 근데 비율이 ㅗㅜㅑ...... 진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은...
첫번째 댓글의 주인공이 되어보세요.